炒股就看金麒麟分析师研报,权威,专业,及时,全面,助您挖掘潜力主题机会!
文:国盛金融工程团队
基于完全拆解法的CCB定价模型。我们可以将有赎回保护期的转债未来平价的不同路径拆分出来,并计算每种路径下的期望权益与债券现金流,加总便可生成转债理论价格。CCB模型相对于传统定价模型的优势在于:
① 相比于二叉树、蒙特卡洛模拟等数值方法:CCB模型属于解析解,运算效率高,在可以对转债进行有效、快速定价的同时,能够实现转债收益分解、参数敏感性测算等其他功能,可拓展性强。
② 相比于BS模型:CCB模型由于考虑到了赎回条款,定价更准确,逻辑更合理。其相对BS模型的优点为:1)对转债定价准确度高,定价偏离度历史中枢接近于0;2)转债收益分解中的转债估值与债底收益更加合理;3)对delta等参数敏感性测算更符合市场情况。
本文的后半部分主要着眼于对CCB定价模型的应用:
① 可转债定价偏离因子。基于“真实价格/模型定价-1”构建定价偏离因子,该因子收益显著且稳定性强,能够更加精准识别低估与高估转债。基于该因子构建的“低估值策略”能够实现20.6%的年化收益,波动和回撤分别仅有12.6%与11.7%,超额收益8.5%,信息比例2.28。
② 可转债市场择时。将不同分域的定价偏离度与市场进行比较,可以生成不同分域可比的“相对估值”指标。基于该指标可以在某个分域高估时低配,低估时超配,有着较好的择时效果。基于相对估值与定价偏离因子可以构建“赔率增强策略”,能够实现25.0%的绝对收益,波动和回撤分别仅有13.0%与12.2%,超额收益12.5%,信息比例2.52。
③ 可转债市场长期收益预测模型。我们通过CCB模型更新以往的可转债市场长期收益预测模型,由于CCB模型内嵌赎回条款,因此可以避免对不同分域隐波中枢的预测,在简化模型的同时,实现了对中证转债指数未来一年收益率的预测。
④ 可转债套利策略。基于CCB模型寻找并配置低估转债的同时,通过卖空个股或者期货的方式实现delta中性化,从而获得稳定的转债估值与gamma收益,生成绝对收益稳定的可转债套利策略。基于正股对冲的套利策略能够实现12.51%年化收益,同时波动率为3.99%,回撤为2.99%。
01
可转债定价模型
1.1可转债定价模型综述
目前比较常见的可转债定价模型主要分成以下两个类型,两类模型各具优缺点:
• 分离法:分离法即将转债拆分成简单资产的组合,比如最常用的“债券+期权”方法。该方法的优点在于简单易理解,但是无法包含复杂的转债条款,并且定价逻辑并不严谨。
本文所介绍的方法属于整体法的一种,称之为完全拆解法,即首先将未来股票的可能走势拆分成多种路径,通过数学公式计算出不同路径下转债所获得的期望现金流,从而计算可转债的价格。由于该模型得到的是解析解,因此其具有运算效率高的优点,同时可以包含赎回等复杂条款。尽管解析解的推导过程较为复杂,但是已有学者完成了推导。本文主要借鉴了周其源(2008)与周其源等(2009)的研究,对转债定价模型进行了进一步研究与实证。
1.2定价模型假设
模型假设即代表着我们是对怎样的一种可转债进行定价,我们对转债模型有着如下假设:
• 可转债不存在回售与下修条款:省略回售条款的原因为其发生的次数较少。尽管下修条款历史上出现次数较多,但是很多时候转债在满足下修条件时,发行人选择不下修,且下修幅度很难估计。同时若加入回售与下修条款,模型复杂性较高,如Feng等(2016)。因此出于上述原因,此处假设转债没有回售与下修条款。
• 可转债存在赎回保护期:赎回保护期即在某个规定的时间内,转债发行人不可以执行赎回条款,赎回保护期有以下两种:1)对于刚上市的转债,往往存在着约半年的赎回保护期。2)若上市半年后股价满足赎回条件,且发行人选择不赎回时,发行人有时会规定未来多长的期限之内不会赎回。
• 若转债不处于赎回保护期,股价碰触赎回线后立即赎回:若已经脱离赎回保护期,则股价碰触赎回线(转股价的130%)后便会立刻赎回且终止。
由此,上述这类转债也被称为“有赎回保护期的可赎回可转债”,后文我们将此模型统一简称为“CCB模型”。
1.3模型参数设置
CCB模型的参数符号与释义见图表2,所有参数均为期初已知参数,其中利率参数为连续利率。
① 完全拆解法。完全拆解法即考虑了转债平价未来所有可能的路线,对每种路线的期望现金流进行贴现,最后将贴现现金流加总作为可转债价格。此处我们以风险中性框架进行定价,为了展示的更加清晰,我们将现金流分为权益现金流与债券现金流两种:
• 权益现金流:即当转债最后是以转股的方式结束时,转债持有人会获得权益现金流。此时发行人不需要支付现金,因此此类现金流是不含有信用风险的。
• 债券现金流:债券现金流由两个部分组成,其一是转债在存续期内所支付的票息,另一个是若转债到期时没有转股,则发行人需要支付面值与最后一期票息。债券现金流是发行人需要用“真金白银”去兑付的,因此债券现金流是有信用风险的。
1.5权益期望现金流
当转债最后以转股的方式终结时,我们可以获得权益现金流。按照完全拆解法,转债平价未来只可能有4条路径,转债会获得如下不同的权益现金流:
路径1:平价在赎回保护期刚结束的tp时大于赎回线h,此时转债会被立即赎回,转债持有人此时会获得权益现金流。
路径2:平价在tp时的价格小于赎回线h,但是在转债到期之前的tp~tm间触碰到了赎回线并触发了赎回条款,此时转债持有人也会获得权益现金流。
路径3:平价在tp时点以及tp~tm间都没有触碰赎回线,但是在转债到期时平价大于fv_N(最后一期债券现金流的终值,即打折后的面值+票息),此时转债持有人也会选择以转股的方式结束转债,从而获得权益现金流。
1.6债券期望现金流
当转债支付票息,或者最后以债券的方式终结时,转债会获得债券现金流。债券现金流按照发生时点的不同可以分为以下三种:
• 发生在赎回保护期内的票息。即在tp之前时,由于可转债无法被赎回,转债在该期间内一直存续,因此这部分票息一定可以拿到。
• 发生在赎回保护期与到期日之间的票息。即在tp与tm之间时,若票息支付时转债没有被赎回,则可以拿到票息,反之便拿不到。其中p_in为一个函数,代表在第i期转债票息支付日时,转债还没有被赎回的概率。
• 发生在到期时的票息与面值。即在tm时刻时,若转债到期未赎回,且平价小于fv_N,则转债持有人会选择拿面值+票息。因此此类债券期望现金流为最后一期债券现金流的现值乘以路径4的概率。
• 随着平价的逐渐上升:转债权益期望现金流占比快速上升。当平价较低时,转债价格基本由债券期望现金流组成,体现了转债此时的债性。当平价较高时,转债价格基本由权益期望现金流组成,体现了转债此时的股性。
那么本文的CCB模型和传统的BS模型定价之间有何区别呢?此处我们对比了一下两个模型的区别:
• 随着平价上涨:当转债由平衡逐渐偏股时,由于赎回条款的影响,CCB模型定价会逐渐接近于平价,转债本身的价值十分接近转股价值。CCB模型与BS模型之间的价差即为赎回条款对转债估值的压缩。
上文所展示的都是带入假定参数的结果,那么在真实市场环境中,CCB模型是否优于BS模型?我们将三个月正股波动率分别带入到CCB模型与BS模型之中得到每个转债每天的理论价格,同时称“真实价格/模型定价-1”为定价偏离度,偏离度的绝对值为定价误差。我们选取余额在3个亿以上且评级AA-及以上的转债,计算偏债、平衡、偏股转债的平均误差,以及市场等权的定价偏离度:
• CCB模型误差更小:由于平衡偏股型转债受到赎回条款的影响更加明显,因此使用BS模型定价会有明显高估,误差更大。CCB模型定价误差较小,偏债、平衡、偏股型转债的误差均在5.6%附近,分布比较平均。
由前文可知,转债隐含的赎回保护期在一定程度上和发行人的赎回行为有关。我们可以构建“满足赎回条件转债占比”指标,将其作为衡量发行人赎回意愿的代理变量。若该指标越高,则说明发行人赎回意愿低。由下图可以看出:
• 自2018至2020年年中:转债发行人赎回意愿高,转债满足赎回条件后便被赎回,导致满足赎回条件占比的转债数量低。
我们曾经在专题报告《可转债资产替代策略与多因子策略》中介绍过收益分解模型,其主要目的在于查看转债个券与策略的收益来源。然而通过本文的研究我们发现,CCB模型相较于BS模型定价准确度更高且更合理,因此本节我们使用CCB模型按照控制变量法进行新的收益分解。具体分解步骤如下所示:
② 对转债理论定价收益进行收益分解。分解为以下三个部分:
基于上述模型,我们可以对中证转债指数的累计收益进行拆解,同时对比了BS模型的拆解结果,可以发现使用CCB模型拆解的收益率更加接近真实的市场情况:
• CCB模型的债底收益相对更低:对于偏股型转债来说,债底收益基本来自于票息,资本利得的收益极小,而只有偏债型转债的债底收益接近于信用债。CCB模型债底收益年化约为2.4%,相对更加合理。
1.10 CCB模型的参数敏感性
• 当转债偏股时,此时转债应该基本上和股票走势近似,而BS模型的delta弹性仅有70%左右,对delta弹性有所低估。反而对于CCB模型来说,当赎回保护期较短时,偏股型转债的delta弹性接近于1,相对更加合理。
02
可转债定价偏离因子
基于CCB定价模型,我们可以构建可转债定价偏离因子,即“定价偏离因子=转债真实价格/CCB模型定价-1”,并带入专题报告《可转债资产替代策略与多因子策略》中的多因子回测框架中,择时框架的细节如下:
• 回测时间:2018年1月到2023年2月,双周度调仓。
• 转债限制:1)转债余额大于等于3亿元;2)转债外部评级AA-及以上;3)开仓时转债非全天停牌,并且尚未发出赎回公告,以及距离转债到期日大于三个月。
• 回测方法:每个月月底按照因子值从小到大对转债进行排序,等分成3个分组,分别查看3个分组相较于市场等权指数超额收益、信息比率、Rank IC。
定价偏离因子本质属于“低估值”因子,即寻找真实价格相较于模型定价较低的转债,从而获取定价误差的收益。因此,我们可以和前述报告中表现较好且同为估值因子的隐波差(隐波-正股历史波动率中枢)进行比较。
• 选债部分:基于定价偏离因子分别在偏债、平衡、偏股内部选择低估值转债,其中每个分域选择数量为1/3该分域内总转债的数量,从而形成“分域增强策略”。
• 配权部分:为了避免超配某个分域对超额收益的影响,我们按照市场基准中的偏债、平衡、偏股转债的权重,对分域增强策略配权,并形成最终策略。
可转债市场择时
对于可转债投资者来说,由于偏债、平衡与偏股转债的收益风险特征各异,如何在三个分域中进行择时与权重配置便显得非常重要。其中,最常见的择时指标为“不同分域的估值”,即当某一个分域中转债估值过高时,则对该分域进行低配,从而避免该分域市场情绪过热导致可能的回撤。反之若某分域估值较低时,则适合进行左侧配置。然而目前常用的估值指标均存在一些缺点:
• 转股溢价率&纯债溢价率:这两种溢价率无法同时度量偏股与偏债转债的估值,即使我们将两者综合,得到溢价率=转债价格/max(平价,债底)-1,平衡转债的溢价率也远高于偏债与偏股转债,导致平衡转债与其他分域不可比。
基于前文研究的结果,CCB模型计算的定价偏离度在不同分域的中枢较为接近,使得不同分域估值可比,因此是一个更优的指标。为了比较不同分域的相对估值,我们可以计算“相对估值”指标,即分域的相对估值=分域CCB定价偏离度ma10 - 市场CCB定价偏离度ma10,并且取±1.5%作为低估与高估的阈值。我们可以对不同分域的相对估值与超额收益的关系进行历史复盘:
• 2019年初与2020年初:在2019-2020年的区间内,偏股转债被长期低估。此时相对估值指标建议超配偏股转债,在此之后偏股转债的超额收益十分显著。
• 2021年初:由于信用风险事件的影响,偏债转债的估值被快速压缩,偏债转债跌出了价值。此时相对估值指标建议对偏债转债进行左侧配置,同时减少对偏股转债的配置权重。
04
可转债市场长期收益预测模型
在专题报告《大类资产定价系列之四:可转债收益预测框架》中,我们曾通过分别预测未来一年转债平价、债底与隐波,最后带入BS公式对未来一年转债持有收益率进行预测。然而在该预测模型中,主要的难点在于:由于赎回条款的影响,需要带入BS公式的偏债、平衡、偏股转债的波动率中枢均有所不同,因此需要分别进行建模计算中枢,难度较大。
本文介绍的CCB模型中内嵌了赎回条款,因此我们直接将个券波动率历史中枢带入模型即可,不需要进行赎回条款的调整。由此,我们按照以下步骤更新转债收益预测框架,并对中证转债指数未来一年收益率进行预测。
可转债套利策略
我们可以在买入低估值转债的同时,通过卖空个股或持有期货空头的方式,使得组合的delta弹性中性来对冲股票风险,这种策略可以被称为可转债套利策略。
① 使用个股对冲的可转债套利策略。首先我们可以通过卖空个股的方式构建可转债套利策略,我们的券池选择要求转债余额在3个亿以上,同时在开仓与平仓期间需要属于融资融券标的,且转债尚未发布赎回公告以及距离转债到期日大于3个月。
• 筛选出低估值转债:若转债真实价格低于CCB模型计算的理论价格,则属于低估值转债,可以作为开仓标的;
• 确定卖空正股数量:通过转股价格与计算的delta弹性,我们可以确定需要卖空的正股数量;
• 转债估值收益为主要收益来源:转债估值收益在不同分项中最高。由于我们选择的是低估值的转债,因此就算2022年整体转债估值收益出现显著回撤,策略的估值收益仍然为正。然而由于策略配置的一部分转债为偏债性,易受到信用冲击的影响从而产生回撤,如2021年初。
• 转债估值收益:转债估值收益主要取决于定价的准确性以及估值回复的稳定性。对于偏债转债来说:1)其定价逻辑更加贴近于对信用债进行估值而不是衍生品定价。同时偏债转债还受到下修条款的影响,因此使用CCB模型定价难以定准。2)偏债型转债易受到信用风险冲击与信用下调的影响(如2021年初),该风险难以被对冲。既然难以对偏债转债定价与对冲信用风险,我们可以在策略中舍弃偏债型转债。
• gamma收益:平衡偏股转债的gamma弹性相对较大,因此为了获取更高的gamma收益,我们同样可以在策略中舍弃偏债转债。
05
附录内容
附录一
此节主要用来展示如何计算截止至某个时间点转债仍然存续的概率。